Aims: Myocardial infarction leads to heart failure and death. Ischaemic preconditioning (PreC) and postconditioning (PostC) reduce infarct size in animal models and human. Zac1 was identified as the only gene related to apoptosis and jointly down-regulated upon PreC and PostC. The aim of our study was to investigate the role of Zac1 down-regulation during ischaemia-reperfusion (I/R) in vivo.
Methods and results: C57BL/6 mice were submitted to myocardial I/R injury, PreC, or PostC protocols. QPCR and immunochemistry showed that Zac1 expression was down-regulated both at the transcriptional and the protein levels upon PreC and PostC. Zac1(-/-) Knockout mice (n = 7) developed smaller infarcts (54%) than Zac1(+/+) littermates (n = 8) and decreased apoptosis (61.7%) in the ischaemic part of the left ventricle during I/R (Zac1(-/-), n = 6 vs. Zac1(+/+), n = 7; P = 0.0012). Mutants showed under control conditions a decrease of 53.9% in mRNA of Daxx, a pro-apoptotic protein playing a key role in I/R injuries (4.81 ± 0.77, n = 4 Zac1(-/-) mice vs. 10.44 ± 3.5, n = 7 Zac1(+/+) mice; P = 0.0121).
Conclusion: Our study shows for the first time that Zac1 is down-regulated both at the transcriptional and protein levels upon PreC and PostC in wild-type mice. Moreover, inactivation of Zac1 in vivo is associated with a decreased amount of Daxx transcripts and, upon I/R injury, decreased infarct size and apoptosis. Altogether, our results show that Zac1 down-regulation plays a key role during cardioprotection against I/R injury and support the concept that cardioprotection regulates a network of interacting pro-apoptotic genes including Zac1 and Daxx.