Rotational spectrum and internal dynamics of tetrahydrofuran-krypton

Chemphyschem. 2012 Jan 16;13(1):221-5. doi: 10.1002/cphc.201100673. Epub 2011 Nov 23.

Abstract

The rotational spectrum of the tetrahydrofuran-krypton van der Waals complex has been investigated by pulsed-jet Fourier transform microwave spectroscopy. The spectra of the (84)Kr and (86)Kr isotopologues have been assigned and the krypton atom is located nearly over the oxygen atom, almost perpendicular to the COC plane. Each rotational transition is split into two component lines due to, according to the observed Coriolis coupling term between the tunneling states, the residual pseudorotational effects of the ring in the complex. The splitting between the two vibrational sublevels is 87.462(2) and 87.062(2) MHz for the (84)Kr and (86)Kr isotopologues, respectively. These splittings have been used to determine the barrier to inversion, B(2) = 67 cm(-1). The dissociation energy has been estimated to be 3.7 kJ mol(-1) from centrifugal distortion effects.