A number of different immunotherapeutic reagents are currently being developed to target IL-2R for the treatment of leukemia, graft rejection, and certain autoimmune diseases. Previously, we have shown that IL-2-PE40, a chimeric protein composed of human IL-2 linked to the N-terminus of a truncated form of Pseudomonas exotoxin (PE), could effectively kill a variety of cell lines in vitro expressing either low, intermediate, or high affinity IL-2R. Here, we demonstrate that IL-2-PE40 can successfully retard or prevent the growth of a lethal ascites tumor or a solid tumor composed of EL4J murine thymoma cells transfected with the p55 murine IL-2R. The transfected line, EL4J-3.4, expresses 1,000 to 3,000 high affinity IL-2R. Survival extension in the ascites model was achieved by initiating treatment either after 4 to 6 h or within 5 days post-tumor injection in both athymic nude and C57BL/6 mice. Similarly, the growth of an aggressive s.c. solid tumor could also be inhibited. Extension of survival was not achieved either by using the truncated toxin alone not attached to IL-2 or by using an IL-2-PE40Asp553 mutant lacking a functional toxin. Survival extension was not caused by IL-2 activated NK or other host effector mechanisms as IL-2-PE40 was unable to prevent the receptor-negative EL4J parental line from forming a lethal ascites or a solid tumor. Thus, IL-2-PE40 is a potent, specific cytolytic reagent that may prove useful in the arsenal of anti-IL-2R immunotherapeutics.