Biochemical and structural studies of uncharacterized protein PA0743 from Pseudomonas aeruginosa revealed NAD+-dependent L-serine dehydrogenase

J Biol Chem. 2012 Jan 13;287(3):1874-83. doi: 10.1074/jbc.M111.294561. Epub 2011 Nov 28.

Abstract

The β-hydroxyacid dehydrogenases form a large family of ubiquitous enzymes that catalyze oxidation of various β-hydroxy acid substrates to corresponding semialdehydes. Several known enzymes include β-hydroxyisobutyrate dehydrogenase, 6-phosphogluconate dehydrogenase, 2-(hydroxymethyl)glutarate dehydrogenase, and phenylserine dehydrogenase, but the vast majority of β-hydroxyacid dehydrogenases remain uncharacterized. Here, we demonstrate that the predicted β-hydroxyisobutyrate dehydrogenase PA0743 from Pseudomonas aeruginosa catalyzes an NAD(+)-dependent oxidation of l-serine and methyl-l-serine but exhibits low activity against β-hydroxyisobutyrate. Two crystal structures of PA0743 were solved at 2.2-2.3-Å resolution and revealed an N-terminal Rossmann fold domain connected by a long α-helix to the C-terminal all-α domain. The PA0743 apostructure showed the presence of additional density modeled as HEPES bound in the interdomain cleft close to the predicted catalytic Lys-171, revealing the molecular details of the PA0743 substrate-binding site. The structure of the PA0743-NAD(+) complex demonstrated that the opposite side of the enzyme active site accommodates the cofactor, which is also bound near Lys-171. Site-directed mutagenesis of PA0743 emphasized the critical role of four amino acid residues in catalysis including the primary catalytic residue Lys-171. Our results provide further insight into the molecular mechanisms of substrate selectivity and activity of β-hydroxyacid dehydrogenases.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Catalysis
  • Crystallography, X-Ray
  • Mutagenesis, Site-Directed
  • NAD / chemistry
  • NAD / genetics
  • NAD / metabolism
  • Oxidation-Reduction
  • Oxidoreductases / chemistry*
  • Oxidoreductases / genetics
  • Oxidoreductases / metabolism
  • Protein Structure, Tertiary
  • Pseudomonas aeruginosa / enzymology*
  • Pseudomonas aeruginosa / genetics
  • Serine / chemistry
  • Serine / genetics
  • Serine / metabolism
  • Substrate Specificity

Substances

  • Bacterial Proteins
  • NAD
  • Serine
  • Oxidoreductases