Neuroprotection has been proposed as one of the acting mechanisms of antidepressants. Paeoniflorin, a monoterpene glycoside, has been reported to display antidepressant-like effects in animal models of behavioural despair. The present study aimed to examine the protective effect of paeoniflorin treatment on corticosterone-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. Paeoniflorin was shown to elevate cell viability, decrease levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) in corticosterone-treated PC12 cells. Paeoniflorin also reversed the reduced nerve growth factor (NGF) mRNA level caused by corticosterone in PC12 cells. The results suggest that paeoniflorin exerts a neuroprotective effect on corticosterone-induced neurotoxicity in PC12 cells, at least in part, via the inhibition of oxidative stress and the up-regulation of NGF expression. This neuroprotective effect may be one of the action pathways that accounts for the in vivo antidepressant activity of paeoniflorin.
Copyright © 2011 John Wiley & Sons, Ltd.