We present a strategy for modeling optical probes within heterogeneous environments of restricted dimension. The method is based on a multiphysics approach comprising sequential structure modeling by means of hybrid Car-Parrinello molecular dynamics and property modeling by means of quantum mechanics/molecular mechanics response theory. For demonstration we address the structural and optical properties of nile red within the β-lacto globulin protein. We consider the cases with the probe situated on the surface or within the cavity of the protein, or embedded in a water solvent. We find the absorption properties of the probe to be highly dependent on its position relative to the protein. Structural rearrangements of the optical probe are found to contribute significantly to these environmental effects.