In this work we report, compare and discuss the results obtained from fully atomistic molecular dynamics simulations of generations 4, 5, and 6 of PAMAM-based dendrimers having NH(3) and triethanolamine as cores, forming complexes with a short interfering RNA (siRNA) at different pH values and at physiological ionic strength. By employing a detailed analysis we demonstrate how features such as molecular size, structural details, and protonation level of this category of dendrimers affect the dendrimer/siRNA complexation. Properties like the conformational flexibility of the dendrimer, the effective charge distribution of the assembly, and the level of intra- and intermolecular hydrogen bonding between the two molecular entities are all found to play a significant role in the mutual interactions between the nucleic acid and the hyperbranched molecules. All these features are of key importance in the multifaceted mechanism of dendrimer/gene complexation, and their understanding can provide valuable insight toward the design of more efficient nucleic acid nanocarriers.
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.