Theaflavins are the major components of tea polyphenols in brewed black tea. We previously reported that theaflavin derivatives, such as TF3, inhibited HIV-1 entry by targeting gp41. However, it is difficult to purify the individual theaflavins and the purified compounds are highly unstable. To develop theaflavins as affordable anti-HIV-1 microbide for preventing HIV sexual transmission, we intended to use an economic natural preparation containing 90% of theaflavins (TFmix). Its antiviral activity against HIV-1 strains was evaluated in vitro using p24 production and luciferase assays. The mechanism by which TFmix inhibits HIV-1 infection was investigated using time-of-addition, cell-cell fusion and biophysical assays. The data suggested TFmix exhibited potent anti-HIV-1 activity on lab-adapted and primary HIV-1 strains with IC(50) less than 1.20 μM. It also effectively inhibited infection by T-20 resistant HIV-1 strains. The mechanism studies suggest that TFmix mainly inhibit the HIV-1 entry by targeting gp41 since it is effective in inhibiting gp41 six-helix bundle (6-HB) formation and HIV-1 envelope protein-mediated cell-cell fusion. TFmix could also inhibit HIV-1 reverse transcriptase (RT) activity, but the IC(50) is about 8-fold higher than that for inhibiting gp41 6-HB formation, suggesting RT is not a major target for TFmix. In conclusion, TFmix is an economic natural product preparation containing high content of theaflavins with potent anti-HIV-1 activity by targeting the viral entry step through the disruption of gp41 6-HB core structure. It has a potential to be developed as a safe and affordable topical microbicide for preventing sexual transmission of HIV.
Copyright © 2011 Elsevier B.V. All rights reserved.