Combining M-FISH and Quantum Dot technology for fast chromosomal assignment of transgenic insertions

BMC Biotechnol. 2011 Dec 13:11:121. doi: 10.1186/1472-6750-11-121.

Abstract

Background: Physical mapping of transgenic insertions by Fluorescence in situ Hybridization (FISH) is a reliable and cost-effective technique. Chromosomal assignment is commonly achieved either by concurrent G-banding or by a multi-color FISH approach consisting of iteratively co-hybridizing the transgenic sequence of interest with one or more chromosome-specific probes at a time, until the location of the transgenic insertion is identified.

Results: Here we report a technical development for fast chromosomal assignment of transgenic insertions at the single cell level in mouse and rat models. This comprises a simplified 'single denaturation mixed hybridization' procedure that combines multi-color karyotyping by Multiplex FISH (M-FISH), for simultaneous and unambiguous identification of all chromosomes at once, and the use of a Quantum Dot (QD) conjugate for the transgene detection.

Conclusions: Although the exploitation of the unique optical properties of QD nanocrystals, such as photo-stability and brightness, to improve FISH performance generally has been previously investigated, to our knowledge this is the first report of a purpose-designed molecular cytogenetic protocol in which the combined use of QDs and standard organic fluorophores is specifically tailored to assist gene transfer technology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Color*
  • In Situ Hybridization, Fluorescence / methods*
  • Mice
  • Mutagenesis, Insertional / genetics*
  • Physical Chromosome Mapping / methods*
  • Quantum Dots*
  • Rats
  • Transgenes / genetics*