Background: Mild traumatic brain injury (cerebral concussion) results in cognitive and emotional dysfunction. These injuries are a significant risk factor for the development of anxiety disorders, including posttraumatic stress disorder. However, because physically traumatic events typically occur in a highly emotional context, it is unknown whether traumatic brain injury itself is a cause of augmented fear and anxiety.
Methods: Rats were trained with one of five fear-conditioning procedures (n = 105) 2 days after concussive brain trauma. Fear learning was assessed over subsequent days and chronic changes in fear learning and memory circuitry were assessed by measuring N-methyl-D-aspartate receptor subunits and glutamic acid decarboxylase, 67 kDa isoform protein levels in the hippocampus and basolateral amygdala complex (BLA).
Results: Injured rats exhibited an overall increase in fear conditioning, regardless of whether fear was retrieved via discrete or contextual-spatial stimuli. Moreover, injured rats appeared to overgeneralize learned fear to both conditioned and novel stimuli. Although no gross histopathology was evident, injury resulted in a significant upregulation of excitatory N-methyl-D-aspartate receptors in the BLA. There was a trend toward decreased γ-aminobutyric acid-related inhibition (glutamic acid decarboxylase, 67 kDa isoform) in the BLA and hippocampus.
Conclusions: These results suggest that mild traumatic brain injury predisposes the brain toward heightened fear learning during stressful postinjury events and provides a potential molecular mechanism by which this occurs. Furthermore, these data represent a novel rodent model that can help advance the neurobiological and therapeutic understanding of the comorbidity of posttraumatic stress disorder and traumatic brain injury.
Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.