The increasing prevalence of bacteria that are insensitive to our current antibiotics emphasizes the need for new antimicrobial therapies. Conventional approaches to antibacterial development that are based on the inhibition of essential processes seem to have reached the point of diminishing returns. The discovery that diverse antibiotics stimulate a common oxidative cell-death pathway represents a fundamental shift in our understanding of bactericidal antibiotic modes of action. A number of studies, as discussed above, also provide hints about how intra- and extracellular metabolism can enable antibiotic resistance and tolerance. We have, nonetheless, just begun to understand the repertoire of tactics that bacteria use to evade antibiotics. Biosynthetic pathways for natural antibiotics are ancient, and numerous mechanisms for antibiotic resistance and tolerance are likely to have evolved over the past few million years. Unraveling these mechanisms will require concerted efforts by chemical biologists, microbiologists and clinicians. These efforts will benefit from the use of metabolic models and other network-biology approaches to guide investigation of processes that modulate antibiotic susceptibility. Importantly, by helping to identify common points of vulnerability as well as key differences between pathogens, these models may lead to the development of effective adjuvants, novel antibiotics and new antimicrobial strategies. There is also a crucial need to better understand how bacteria within a population cooperate to overcome antibiotic treatments. Such investigations may benefit from the use of novel chemical probes and experimental techniques to interrogate the physiology and functional dynamics of natural microbial communities. Insights gained from these studies will augment metagenomic models that can be used to identify biomolecules responsible for these cooperative strategies. Leveraging chemical biology methodologies and systems-biology approaches for further studies of microbial environments may reveal a wealth of untapped targets for the development of novel compounds to counter the growing threat of resistant and tolerant bacterial infections.