Monitoring on-chip Pictet-Spengler reactions by integrated analytical separation and label-free time-resolved fluorescence

Chemistry. 2012 Jan 23;18(4):1240-6. doi: 10.1002/chem.201101768. Epub 2011 Dec 16.

Abstract

High-throughput screening for optimal reaction conditions and the search for efficient catalysts is of eminent importance in the development of chemical processes and for expanding the spectrum of synthetic methodologies in chemistry. In this context we report a novel approach for a microfluidic chemical laboratory integrating organic synthesis, separation and time-resolved fluorescence detection on a single microchip. The feasibility of our integrated laboratory is demonstrated by monitoring the formation of tetrahydroisoquinoline derivatives by Pictet-Spengler condensation. After on-chip reaction the products and residual starting material were separated enantioselectively on the same chip. On-chip deep UV laser-induced fluorescence detection with time-correlated single photon counting was applied for compound assignment. The system was utilized to screen reaction conditions and various substrates for Pictet-Spengler reactions on-chip. Finally, the microlab was successfully applied to investigate enantioselective reactions using BINOL-based phosphoric acids as organocatalysts.