Myocardial performance index in subjects susceptible to high-altitude pulmonary edema

Intern Med. 2011;50(24):2967-73. doi: 10.2169/internalmedicine.50.5942. Epub 2011 Dec 15.

Abstract

Objective: A recent study concerning high-altitude pulmonary edema (HAPE), a non-cardiogenic pulmonary edema, suggested that it is initially a hydrostatic-type pulmonary edema. We suspect that some extent of cardiac insufficiency may likely relate to the mechanism of the development of this disease.

Methods: By Doppler echocardiography, the Tei index (a new quantitative index proposed for the evaluation of global myocardial performance) and the systolic pulmonary artery pressure (sPAP) were measured before and after 30 minutes of hypoxic breathing.

Patients: Eleven HAPE-susceptible subjects (HAPE-s) and nine HAPE-resistant subjects (HAPE-r).

Results: The results of Tei index indicated an enhanced left myocardial performance but an impaired right performance in HAPE-s during hypoxic breathing. The sPAP of HAPE-s was significantly increased after hypoxic breathing, which was not correlated with the heart functions such as right ventricular (RV) Tei index, cardiac index (CI), percent ejection fraction (EF%) and percent fractional shortening (FS%) under hypoxic condition. Comparatively, the HAPE-r subjects did not show such significant changes of Tei index after hypoxic breathing. The results suggested that a paradoxical myocardial performance, in a format of an augmented left ventricular (LV) in contrast to an attenuated RV, was observed in the HAPE-s exposed to acute hypoxia.

Conclusion: The responses of the left and right myocardial performances to hypoxia may be involved in the pathogenesis of HAPE.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Altitude
  • Altitude Sickness / etiology*
  • Altitude Sickness / physiopathology*
  • Blood Pressure
  • Case-Control Studies
  • Disease Susceptibility
  • Echocardiography, Doppler
  • Humans
  • Hypertension, Pulmonary / etiology*
  • Hypertension, Pulmonary / physiopathology*
  • Hypoxia / physiopathology
  • Male
  • Middle Aged
  • Pulmonary Artery / physiopathology
  • Pulmonary Edema / etiology*
  • Pulmonary Edema / physiopathology*
  • Ventricular Function, Left
  • Ventricular Function, Right

Supplementary concepts

  • Pulmonary edema of mountaineers