Aims: Pulsed light (PL) technology is an efficient surface decontamination process. Used in low transmitted energy conditions, PL induces a stress that can be perceived by bacteria. The effect of such a PL stress was investigated on the highly environmental adaptable germ Pseudomonas aeruginosa PAO1.
Methods and results: Pulses of transmitted energy (fluence) reaching 1·8Jcm(-2) can kill 10(9) bacteria. Application of a lower sublethal PL dose allowed the bacteria to resist and survive more efficiently to a subsequent dose of PL. This sublethal dose was not increasing the mutation frequency of Ps. aeruginosa, but altered the abundance of 15 proteins as revealed by a global proteome analysis, including stress-induced proteins, phage-related proteins, energy and carbon metabolisms, cell motility, and transcription and translation regulators.
Conclusions: A response to a low-energy PL dose takes place in Ps. aeruginosa, reducing the energy conversion systems, while increasing transcription and translation processes to produce proteins involved in chaperone mechanisms and phage-related proteins, probably to protect the bacterium against a new PL-induced stress.
Significance and impact of the study: Taken together, these results suggest that a low-energy PL dose is sufficient to provoke adaptation of Ps. aeruginosa, leading to enhancing its resistance to a subsequent lethal treatment.
© 2011 No claim to French Government works. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.