State-dependent doubly weighted stochastic simulation algorithm for automatic characterization of stochastic biochemical rare events

J Chem Phys. 2011 Dec 21;135(23):234108. doi: 10.1063/1.3668100.

Abstract

In recent years there has been substantial growth in the development of algorithms for characterizing rare events in stochastic biochemical systems. Two such algorithms, the state-dependent weighted stochastic simulation algorithm (swSSA) and the doubly weighted SSA (dwSSA) are extensions of the weighted SSA (wSSA) by H. Kuwahara and I. Mura [J. Chem. Phys. 129, 165101 (2008)]. The swSSA substantially reduces estimator variance by implementing system state-dependent importance sampling (IS) parameters, but lacks an automatic parameter identification strategy. In contrast, the dwSSA provides for the automatic determination of state-independent IS parameters, thus it is inefficient for systems whose states vary widely in time. We present a novel modification of the dwSSA--the state-dependent doubly weighted SSA (sdwSSA)--that combines the strengths of the swSSA and the dwSSA without inheriting their weaknesses. The sdwSSA automatically computes state-dependent IS parameters via the multilevel cross-entropy method. We apply the method to three examples: a reversible isomerization process, a yeast polarization model, and a lac operon model. Our results demonstrate that the sdwSSA offers substantial improvements over previous methods in terms of both accuracy and efficiency.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms*
  • Biochemical Phenomena*
  • GTP-Binding Proteins / chemistry
  • Isomerism
  • Lac Operon
  • Molecular Dynamics Simulation*
  • Probability
  • Stochastic Processes*
  • Thermodynamics

Substances

  • GTP-Binding Proteins