Objective: IGF-1 is an important regulator of postnatal growth in mammals. In mice, a non-circulating, locally acting isoform of IGF-1, IGF-1Ea, has been documented as a central regulator of muscle regeneration and has been shown to improve repair in the heart and skin. In this study, we examine whether local production of IGF1-Ea protein improves tubular repair after renal ischemia reperfusion injury.
Design: Transgenic mice in which the proximal-tubule specific promoter Sglt2 was driving the expression of an Igf-1Ea transgene. These animals were treated with an ischemic-reperfusion injury and the response at 24h and 5days compared with wildtype littermates.
Results: Transgenic mice demonstrated rapid and enhanced renal injury in comparison to wild type mice. Five days after injury the wild type and low expressing Igf-1Ea transgenic mice showed significant tubular recovery, while high expressing Igf-1Ea transgenic mice displayed significant tubular damage. This marked injury was accompanied by a two-fold increase in the number of F4/80 positive macrophages and a three-fold increase in the number of Gr1-positive neutrophils in the kidney. At the molecular level, Igf-1Ea expression resulted in significant up-regulation of proinflammatory cytokines such as TNF-α and Ccl2. Expression of Nfatc1 was also delayed, suggesting reduced tubular proliferation after kidney injury.
Conclusions: These data indicate that, unlike the muscle, heart and skin, elevated levels of IGF-1Ea in the proximal tubules exacerbates ischemia reperfusion injury resulting in increased recruitment of macrophages and neutrophils and delays repair in a renal setting.
Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.