Endemic strains of Legionella pneumophila sequence type 1 (ST1), in particular the ST1/Paris pulsotype, are dispersed worldwide and represent about 10% of culture-proven clinical cases of Legionnaires' disease in France. The high rate of isolation of this strain from both clinical and environmental samples makes identification of the source of infection difficult during epidemiological investigations. The full-length genome sequence of this strain was recently determined, and it revealed the presence of a CRISPR/cas complex. The aim of this study was to develop and evaluate a spoligotyping tool based on the diversity of this CRISPR locus that would allow the accurate subtyping of the L. pneumophila serogroup 1 ST1/Paris pulsotype. The CRISPR loci of 28 L. pneumophila ST1/Paris pulsotype isolates were sequenced, and 42 different spacers regions were characterized. A membrane-based spoligotyping method was developed and used to determine the subtypes of 406 L. pneumophila isolates, including 233 with the ST1/Paris pulsotype profile that were collected in France from 2000 to 2011. A total of 46 different spoligotypes were detected, and 41 of these were specifically identified in the ST1/Paris pulsotype isolates. In 27 of 33 epidemiological investigations, the environmental source of contamination was confirmed by comparing spoligotypes of clinical isolates with those of environmental isolates. With an index of discrimination of 79.72% (95% confidence interval, 75.82 to 83.63), spoligotyping of the L. pneumophila ST1/Paris pulsotype has the potential to be a useful complementary genotyping tool for discriminating isolates with undistinguishable pulsed-field gel electrophoresis (PFGE) and ST genotypes, which could help to identify environmental sources of infection.