Paroxysmal Nocturnal Haemoglobinuria (PNH) is due to pathological expansion of a stem progenitor bearing a somatic mutation of PIG-A gene involved in the biosynthesis of the glycosyl-phosphatidyl-inositol (GPI) anchor. Numerous data suggest a role for immune-mediated mechanisms in the selection/expansion of GPI-defective clone. Haemolytic anaemia in PNH is dependent on the effect of complement against GPI-defective red cells. Eculizumab, an anti-C5 monoclonal antibody, is dramatically effective in controlling haemolysis and thrombosis, in reducing fatigue and in improving quality of life of patients. However, this therapy presents new challenges that need to be properly faced. Here, we report the decrease in B, Natural Killer (NK) and regulatory T cells (Treg), an altered cytokine profile of invariant-NKT cells (NKTi) and the increasing of C-X-C chemokine receptor type 4 (CXCR4) receptor in PNH patients before the Eculizumab therapy. Treatment significantly affects some of these alterations: after Eculizumab, the number of B lymphocytes, the cytokine secretion of NKTi and CXCR4 expression on CD8 T cells became similar to healthy donors. No effects were observed on NK and Treg. The amplitude of the GPI-defective compartment remained unchanged.
Copyright © 2011 Elsevier GmbH. All rights reserved.