Monoammoniate of calcium amidoborane: synthesis, structure, and hydrogen-storage properties

Inorg Chem. 2012 Feb 6;51(3):1599-603. doi: 10.1021/ic201898v. Epub 2012 Jan 9.

Abstract

The monoammoniate of calcium amidoborane, Ca(NH(2)BH(3))(2)·NH(3), was synthesized by ball milling an equimolar mixture of CaNH and AB. Its crystal structure has been determined and was found to contain a dihydrogen-bonded network. Thermal decomposition under an open-system begins with the evolution of about 1 equivalent/formula unit (equiv.) of NH(3) at temperatures <100 °C followed by the decomposition of Ca(NH(2)BH(3))(2) to release hydrogen. In a closed-system thermal decomposition process, hydrogen is liberated in two stages, at about 70 and 180 °C, with the first stage corresponding to an exothermic process. It has been found that the presence of the coordinated NH(3) has induced the dehydrogenation to occur at low temperature. At the end of the dehydrogenation, about 6 equiv. (∼ 10.2 wt %) of hydrogen can be released, giving rise to the formation of CaB(2)N(3)H.