Infectious pancreatic necrosis virus (IPNV) infects wild and cultured salmonids, causing high mortality in juvenile trouts and salmons. IPNV VP2-VP3 fusion gene was constructed by splicing overlap extension (SOE) PCR and inserted into Lactobacillus/Escherichia coli shuttle vectors (pPG1and pPG2) followed by transformation of Lactobacillus casei competent cell to yield two recombinant strains: Lc:PG1-VP2-VP3 (surface-displayed) and Lc:PG2-VP2-VP3 (secretory). Subsequently, juvenile rainbow trouts were inoculated with the recombinant strains via orogastric route. Our results demonstrated that Lactobacillus-derived VP2-VP3 fusion protein could induce production of serum IgM specific for IPNV with neutralizing activity in rainbow trouts. Statistical analyses of IgM levels showed that immunogenicity of Lc:PG1-VP2-VP3 was more powerful than that of Lc:PG2-VP2-VP3 (P<0.001) in rainbow trouts. This result has been confirmed by viral loads reduction analyzed by real-time RT-PCR in orogastrically immunized rainbow trouts after virus challenging. Comparing to trouts received Lactobacillus (control), rainbow trouts orogastrically dosed with Lc:PG1-VP2-VP3 resulted in ∼10-fold reduction in viral loads on day 10 post-virus challenging, and ∼4-fold did by Lc:PG2-VP2-VP3. Taken together, Lc:PG1-VP2-VP3 functions as novel mucosal vaccine against IPNV infection in rainbow trouts, which most likely come true.
Copyright © 2012 Elsevier Ltd. All rights reserved.