Within plastid-bearing species, the relative rates of evolution between mitochondrial and plastid genomes are poorly studied, but for the few lineages in which they have been explored, including land plants and green algae, the mitochondrial DNA mutation rate is nearly always estimated to be lower than or equal to that of the plastid DNA. Here, we show that in protists from three distinct lineages with secondary, red algal-derived plastids, the opposite is true: their mitochondrial genomes are evolving 5-30 times faster than their plastid genomes, even when the plastid is nonphotosynthetic. These findings have implications for understanding the origins and evolution of organelle genome architecture and the genes they encode.
© 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists.