The effect of humeral torsion on rotational range of motion in the shoulder and throwing performance

J Anat. 2012 Mar;220(3):293-301. doi: 10.1111/j.1469-7580.2011.01464.x. Epub 2012 Jan 18.

Abstract

Several recent studies have found that throwing athletes typically have lower humeral torsion (retroversion) and a greater range of external rotation at the shoulder than non-athletes. How these two parameters are related is debated. This study uses data from a sample of both throwers and non-throwers to test a new model that predicts torsion values from a range of motion data. The model proposes a series of predicted regressions which can help provide new insight into the factors affecting rotational range of motion at the shoulder. Humeral torsion angles were measured from computed tomography scans collected from 25 male subjects. These values are compared to predicted torsion values for the same subjects calculated from both kinematic and goniometric range-of-motion data. Results show that humeral torsion is negatively correlated (goniometric: r = -0.409, P = 0.047; kinematic: r = -0.442, P = 0.035) with external rotational range of motion and positively correlated (goniometric: r = 0.741, P < 0.001; kinematic: r = 0.559, P = 0.006) with internal rotational range of motion. The predicted torsion values are highly correlated (goniometric: r = 0.815, P < 0.001; kinematic: r = 0.617, P = 0.006) with actual torsion values. Deviations in the data away from predicted equations highlight significant differences between high torsion and low torsion individuals that may have significant functional consequences. The method described here may be useful for non-invasively assessing the degree of torsion in studies of the evolution and biomechanics of the shoulder and arm, and for testing hypotheses about the etiology of repetitive stress injuries among athletes and others who throw frequently.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adolescent
  • Adult
  • Athletic Performance / physiology*
  • Baseball / physiology
  • Biomechanical Phenomena
  • Humans
  • Humerus / diagnostic imaging
  • Humerus / physiology*
  • Male
  • Models, Biological*
  • Range of Motion, Articular / physiology*
  • Regression Analysis
  • Shoulder Joint / diagnostic imaging
  • Shoulder Joint / physiology*
  • Tomography, X-Ray Computed
  • Torsion, Mechanical*
  • Young Adult