The mechanisms of cholinergic stimulation of gastrin cells were studied in the rat pancreatic cell line B6 RIN. Carbachol induced an increase in intracellular Ca2+ and stimulated gastrin release in a dose-dependent manner over the range 10(-5)-10(-3) M. These effects were completely abolished by atropine, suggesting the implication of muscarinic cholinergic receptors. The binding properties of these receptors were investigated. [N-Methyl-3H]scopolamine [( 3H]NMS) binding on cell homogenates was time-dependent, saturable and consistent with a single high-affinity binding class (Kd = 39.5 pM, and Bmax = 7.9 fmol/mg DNA). Carbachol competitively inhibited [3H]NMS binding. The potency of inhibition of [3H]NMS binding by subtype selective antagonists was hexahydrodifenidol greater than pirenzepine greater than AF-DX 116. These results suggest the M3 muscarinic receptors may be involved in the carbachol-induced gastrin release from B6 RIN cells.