Background: Inflammatory bowel disease (IBD) is characterized by an injured epithelium. Development of agents that could enhance mucosal healing is a major goal in IBD therapeutics. The 18-kDa antrum mucosal protein (AMP-18) and a 21-mer peptide derived from AMP-18 stimulate accumulation of tight junction (TJ) proteins in cultured epithelial cells and mouse colonic mucosa to protect the mucosal barrier, suggesting it might be a useful agent to treat IBD.
Methods: We searched for molecular mechanisms by which AMP peptide or recombinant AMP-18 act on TJs in intact cell monolayers, or those disrupted by low-calcium medium. Roles of the p38 mitogen-activated protein kinase (MAPK) / heat shock protein (hsp)25 pathway and PKCζ were investigated by immunoblotting and confocal microscopy.
Results: AMP peptide activated p38 MAPK, which subsequently phosphorylated hsp25. Accumulated phospho-hsp25 was associated with perijunctional actin. AMP-18 also induced rapid phosphorylation of PKCζ and its colocalization with perijunctional actin in Caco2/bbe cells, which was accompanied by translocation and formation of complexes of "polarity proteins" in the TJ-containing detergent-insoluble fraction. Treatment with AMP-18 also stimulated accumulation of ZO-1, ZO-2, and JAM-A in nascent TJs known to associate with the multimeric p-PKCζ/Par6/ Cdc42/ECT2·GTP/Par3 polarity protein complex.
Conclusions: AMP-18 facilitates translocation and assembly of multiple proteins into TJs and their association with and subsequent stabilization of the actin filament network. We speculate that improved barrier function induced by AMP-18 is mediated by enhanced TJ assembly. Thus, AMP-18 may provide a promising lead to develop agents effective in healing injured colonic epithelium in IBD.
Copyright © 2012 Crohn's & Colitis Foundation of America, Inc.