Claudin7 and moesin in endometrial Adenocarcinoma; a retrospective study of 265 patients

BMC Res Notes. 2012 Jan 24:5:65. doi: 10.1186/1756-0500-5-65.

Abstract

Background: Metastasis is the main cause of death in cancer and is a multistep process. Moesin (MSN), a member of the ezrin-rdixin-moesin family and Claudin7 (CLDN7), a tight junction protein, both play a role in tumor cell metastasis. Previously, we found an over-expression of MSN and under-expression of CLDN7 at the mRNA level in uterine serous carcinoma in comparison to uterine endometrioid adenocarcinoma. The purpose of this study is to determine the protein expression of MSN and CLDN7 in endometrial cancer (EC) and to evaluate their prognostic value. Two hundred sixty-five patients with EC were retrieved from the archives. MSN and CLDN7 immunostaining were performed on the tissue paraffin sections. The expression of each antibody was reported and then correlated with clinicopathological prognostic factors including age, tumor grade, tumor stage, lympho-vascular involvement, depth of myometrial invasion, overall survival (OS), disease free survival (DFS) and death of disease (DOD).

Results: MSN and CLDN were expressed in 46% and 52% of overall cases. We observed an association between MSN+ staining and tumor grade, and serous and clear cell carcinoma subtypes (p < 0.001 each). There was an association between CLDN7+ staining and low tumor grade and endometrioid adenocarcinoma subtype (p < 0.001 and 0.001 respectively). However, no association between MSN and CLDN7 expression and outcome including OS, DOD, and DFS was found.

Conclusion: A significant prognostic value of MSN and CLDN7 in predicting disease outcomes in patients with EC was not demonstrated. Nevertheless, the high percentage of EC cases with MSN and CLDN7 immunoexpression, and their association with tumor grade and subtypes, suggests that these proteins might play a role in tumorigenesis of endometrial adenocarcinomas. Future studies are needed to shed light on their mechanistic properties in EC cells.