Cyclic peptide inhibitors of HIV-1 capsid-human lysyl-tRNA synthetase interaction

ACS Chem Biol. 2012 Apr 20;7(4):761-9. doi: 10.1021/cb200450w. Epub 2012 Feb 13.

Abstract

The human immunodeficiency virus type 1 (HIV-1) capsid protein (CA) plays a critical role in the viral life cycle. The C-terminal domain (CTD) of CA binds to human lysyl-tRNA synthetase (hLysRS), and this interaction facilitates packaging of host cell tRNA(Lys,3), which serves as the primer for reverse transcription. Here, we report the library synthesis, high-throughput screening, and identification of cyclic peptides (CPs) that bind HIV-1 CA. Scrambling or single-residue changes of the selected peptide sequences eliminated binding, suggesting a sequence-specific mode of interaction. Two peptides (CP2 and CP4) subjected to detailed analysis also inhibited hLysRS/CA interaction in vitro. Nuclear magnetic resonance spectroscopy and mutagenesis studies revealed that both CPs bind to a site proximal to helix 4 of the CA-CTD, which is the known site of hLysRS interaction. These results extend the current repertoire of CA-binding molecules to a new class of peptides targeting a novel site with potential for development into novel antiviral agents.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Antiviral Agents / chemical synthesis*
  • Binding Sites
  • Capsid Proteins / metabolism*
  • HIV-1 / drug effects*
  • HIV-1 / enzymology
  • High-Throughput Screening Assays
  • Humans
  • Lysine-tRNA Ligase / metabolism*
  • Magnetic Resonance Spectroscopy
  • Peptides, Cyclic / chemical synthesis
  • Peptides, Cyclic / pharmacology*
  • Protein Binding / drug effects
  • Small Molecule Libraries / chemical synthesis
  • Small Molecule Libraries / pharmacology

Substances

  • Antiviral Agents
  • Capsid Proteins
  • Peptides, Cyclic
  • Small Molecule Libraries
  • Lysine-tRNA Ligase