Continuous fermentation by retaining cells with a membrane-integrated fermentation reactor (MFR) system was found to reduce the amount of supplied sub-raw material. If the amount of sub-raw material can be reduced, continuous fermentation with the MFR system should become a more attractive process for industrialization, due to decreased material costs and loads during the refinement process. Our findings indicate that the production rate decreased when the amount of the sub-raw material was reduced in batch fermentation, but did not decrease during continuous fermentation with Sporolactobacillus laevolacticus. Moreover, continuous fermentation with a reduced amount of sub-raw material resulted in a productivity of 11.2 g/L/h over 800 h. In addition, the index of industrial process applicability used in the MFR system increased by 6.3-fold as compared with the conventional membrane-based fermentation reactor previously reported, suggesting a potential for the industrialization of this D-lactic acid continuous fermentation process.