Supplementation of collagen scaffolds with SPARC to facilitate mineralization

J Biomed Mater Res B Appl Biomater. 2012 Apr;100(3):862-70. doi: 10.1002/jbm.b.32650. Epub 2012 Jan 25.

Abstract

The extracellular matrix-associated protein, SPARC (Secreted Protein Acidic and Rich in Cysteine) is known to play a role in the mineralization of collagen in bone formation. The objectives of this study were to determine: 1) if SPARC supplementation of type 1 collagen scaffolds in vitro facilitated the binding of pre-formed HA nanoparticles added to the scaffolds; 2) if SPARC supplementation of the scaffolds enhanced the uptake of calcium and phosphorus from calcium phosphate solutions; and 3) if pretreatment in a calcium phosphate solution enhanced the subsequent binding of the nanoparticles. A related objective was to begin to determine the behavior of mesenchymal stem cells in the scaffolds when the constructs were grown in osteogenic medium. The calcium and phosphorus contents of the scaffolds were evaluated by inductively coupled plasma analysis, and the elastic modulus of the scaffolds determined by unconfined compression testing. Scaffolds were seeded with goat bone marrow-derived mesenchymal stem cells and the cell-seeded constructs grown in osteogenic medium. Supplementation of the scaffolds with as little as 0.008 % SPARC (by wt. of collagen) resulted in an increase in the binding of hydroxyapatite nanoparticles to the scaffold, but had no effect on incorporation of calcium or phosphorus from a calcium phosphate solution. The incorporation of hydroxyapatite nanoparticles into the scaffolds did not result in an increase in modulus. Supplementation of the scaffolds with SPARC and the increase in the binding of hydroxyapatite nanoparticles did not affect the proliferation of mesenchymal stem cells.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bone Marrow Cells / cytology*
  • Bone Marrow Cells / metabolism
  • Calcification, Physiologic*
  • Cell Proliferation
  • Collagen / chemistry*
  • Durapatite / chemistry*
  • Female
  • Goats
  • Mesenchymal Stem Cells / cytology*
  • Mesenchymal Stem Cells / metabolism
  • Nanoparticles / chemistry*
  • Osteonectin / chemistry*
  • Tissue Scaffolds / chemistry*

Substances

  • Osteonectin
  • Collagen
  • Durapatite