Enrofloxacin is able to control Toxoplasma gondii infection in both in vitro and in vivo experimental models

Vet Parasitol. 2012 Jun 8;187(1-2):44-52. doi: 10.1016/j.vetpar.2011.12.039. Epub 2012 Jan 10.

Abstract

Currently, toxoplasmosis is treated with sulfadiazine and pyrimethamine. However, this treatment presents several adverse side effects; thus, there is a critical need for the development and evaluation of new drugs, which do not present the same problems of the standard therapy. Enrofloxacin is a fluoroquinolone antibiotic known to control infection against several bacteria in veterinary medicine. Recently, this drug has demonstrated protective effects against protozoan parasites such as Neospora caninum. The present study aimed to determine the effect of enrofloxacin in the control of Toxoplasma gondii infection. For this purpose, human foreskin fibroblast (HFF) cells were infected with T. gondii RH strain and treated with sulfadiazine, penicillin/streptomycin, pyrimethamine, or enrofloxacin. Following treatment, we analyzed the infection index, parasite intracellular proliferation and the number of plaques. Additionally, tissue parasitism and histological changes were investigated in the brain of Calomys callosus that were infected with T. gondii (ME49 strain) and treated with either sulfadiazine or enrofloxacin. Enrofloxacin was able to reduce the infection index, intracellular proliferation and the number of plaques in HFF cells infected by T. gondii in comparison with untreated or penicillin/streptomycin-treated ones. Enrofloxacin was more protective against T. gondii in HFF infected cells than sulfadiazine treatment (P<0.001). In addition, pyrimethamine, enrofloxacin or the associations of sulfadiazine plus pyrimethamine, enrofloxacin plus sulfadiazine or enrofloxacin plus pyrimethamine-treatments were able to reduce the plaque numbers in HFF cells infected by T. gondii when compared to medium, penicillin/streptomycin or sulfadiazine alone. In vivo experiments demonstrated that enrofloxacin diminished significantly the tissue parasitism as well as the inflammatory alterations in the brain of C. callosus infected with T. gondii when compared with untreated animals. Based on our findings, it can be concluded that enrofloxacin is a potential alternative drug for the treatment of toxoplasmosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antiprotozoal Agents / pharmacology
  • Antiprotozoal Agents / therapeutic use
  • Cells, Cultured
  • Enrofloxacin
  • Female
  • Fibroblasts / parasitology
  • Fluoroquinolones / pharmacology*
  • Fluoroquinolones / therapeutic use*
  • Humans
  • Sigmodontinae*
  • Toxoplasma / drug effects*
  • Toxoplasmosis, Animal / drug therapy*
  • Toxoplasmosis, Animal / parasitology

Substances

  • Antiprotozoal Agents
  • Fluoroquinolones
  • Enrofloxacin