Automated quantification of coronary plaque with computed tomography: comparison with intravascular ultrasound using a dedicated registration algorithm for fusion-based quantification

Eur Heart J. 2012 Apr;33(8):1007-16. doi: 10.1093/eurheartj/ehr465. Epub 2012 Jan 26.

Abstract

Aims: Previous studies have used semi-automated approaches for coronary plaque quantification on multi-detector row computed tomography (CT), while an automated quantitative approach using a dedicated registration algorithm is currently lacking. Accordingly, the study aimed to demonstrate the feasibility and accuracy of automated coronary plaque quantification on cardiac CT using dedicated software with a novel 3D coregistration algorithm of CT and intravascular ultrasound (IVUS) data sets.

Methods and results: Patients who had undergone CT and IVUS were enrolled. Automated lumen and vessel wall contour detection was performed for both imaging modalities. Dedicated automated quantitative software (QCT) with a unique registration algorithm was used to fuse a complete IVUS run with a CT angiography volume using true anatomical markers. At the level of the minimal lumen area (MLA), percentage lumen area stenosis, plaque burden, and degree of remodelling were obtained on CT. Additionally, mean plaque burden was assessed for the whole coronary plaque. At the identical level within the coronary artery, the same variables were derived from IVUS. Fifty-one patients (40 men, 58 ± 11 years, 103 coronary arteries) with 146 lesions were evaluated. Quantitative computed tomography and IVUS showed good correlation for MLA (n = 146, r = 0.75, P < 0.001). At the level of the MLA, both techniques were well-correlated for lumen area stenosis (n = 146, r = 0.79, P < 0.001) and plaque burden (n = 146, r = 0.70, P < 0.001). Mean plaque burden (n = 146, r = 0.64, P < 0.001) and remodelling index (n = 146, r = 0.56, P < 0.001) showed significant correlations between QCT and IVUS.

Conclusion: Automated quantification of coronary plaque on CT is feasible using dedicated quantitative software with a novel 3D registration algorithm.

Publication types

  • Comparative Study
  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Algorithms
  • Coronary Artery Disease / diagnostic imaging*
  • Coronary Stenosis / diagnostic imaging
  • Feasibility Studies
  • Female
  • Humans
  • Male
  • Middle Aged
  • Multidetector Computed Tomography / methods*
  • Plaque, Atherosclerotic / diagnostic imaging*
  • Tomography, X-Ray Computed / methods*
  • Ultrasonography, Interventional / methods*
  • Vascular Calcification / diagnostic imaging
  • Ventricular Remodeling / physiology