Background: Ara h 2 and Ara h 6, co-purified together in a 13-25 kD fraction (Ara h 2/6; 20 kD fraction) on gel filtration chromatography, account for the majority of effector activity in a crude peanut extract (CPE) when assayed with RBL SX-38 cells sensitized with IgE from human peanut allergic sera.
Objectives: To determine if Ara h 2/6 are the primary peanut allergens responsible for allergic reactions in vivo and to determine if Ara h 2/6 would be sufficient to prevent allergic reactions to a complete CPE.
Methods: An oral sensitization mouse model of peanut allergy was used to assess the activity of Ara h 2/6 (20 kD) and CPE without the 20 kD fraction (CPE w/o 20 kD) for allergic provocation challenge and immunotherapy. The activity of these preparations was also tested in an assay of histamine release from human basophils in whole blood.
Results: Compared with mice challenged with control CPE, mice challenged with CPE w/o 20 kD experienced reduced symptoms (P < 0.05) and a smaller decrease in body temperature (P < 0.01). Results with the basophil histamine release assay corroborated these findings (P < 0.01). The mouse model was also used to administer Ara h 2/6 (20 kD) in an immunotherapy protocol, in which peanut-allergic mice treated with the 20 kD fraction experienced significantly reduced symptoms, changes in body temperature, and mast cell protease (MMCP-1) release compared with placebo (P < 0.01 for all parameters). Importantly, immunotherapy with the 20 kD fraction was just as effective as treatment with CPE, whereas CPE w/o 20 kD was significantly less effective for higher dose peanut challenges.
Conclusions and clinical relevance: Ara h 2/6 are the most potent peanut allergens in vivo and can be used to desensitize peanut-allergic mice. These results have potential implications for clinical research in the areas of diagnosis and immunotherapy for peanut allergy.
© 2011 Blackwell Publishing Ltd.