Reconstructed models of metabolic networks are widely used for studying metabolism in various organisms. Many different reconstructions of the same organism often exist concurrently, forcing researchers to choose one of them at the exclusion of the others. We describe MetaMerge, an algorithm for semi-automatically reconciling a pair of existing metabolic network reconstructions into a single metabolic network model. We use MetaMerge to combine two published metabolic networks for Mycobacterium tuberculosis into a single network, which allows many reactions that could not be active in the individual models to become active, and predicts essential genes with a higher positive predictive value.