The effect of aniracetam (10, 50, 100 mg/kg i.p. daily for 15 days) on both behavioural and biochemical parameters was investigated in the adult rat. Animals given aniracetam (50 mg/kg 1 h before the trial) showed a significant increase in the percentage of conditioned active avoidance responses and a reduction of latency times. Aniracetam significantly counteracted the scopolamine-induced memory failure at the passive avoidance (step down) test, while it did not modify the locomotion of the animals. In purified frontocortical and hippocampal synaptic membranes of rats treated with aniracetam (50 mg/kg i.p. daily for 15 days) a potentiation of basal, carbamylcholine-, dopamine- and norepinephrine-stimulated adenylyl cyclase activity was observed, while forskolin-stimulated enzyme activity was not modified. With regard to inositol phosphate production measured in fronto-cortical synaptoneurosomes, aniracetam potentiated the stimulation by angiotensin II, while the stimulation by carbamylcholine, not affected by 10 and 50 mg/kg aniracetam, was notably, although not significantly, decreased by 100 mg/kg aniracetam. Furthermore, in synaptosomes derived from hippocampus, aniracetam (50 mg/kg i.p. daily for 15 days) caused an increase of both basal and K(+)-stimulated intrasynaptosomal Ca(2+) concentration. In conclusion, a correlation between the improvement of behavioural performance and the modulation of transducing systems by aniracetam seems to take place in brain areas, such as frontal cortex and hippocampus, known to play a major role in the control of cognitive functions.