Missense mutations in the DNA-binding/dimerization domain of NFIX cause Sotos-like features

J Hum Genet. 2012 Mar;57(3):207-11. doi: 10.1038/jhg.2012.7. Epub 2012 Feb 2.

Abstract

Sotos syndrome is characterized by prenatal and postnatal overgrowth, characteristic craniofacial features and mental retardation. Haploinsufficiency of NSD1 causes Sotos syndrome. Recently, two microdeletions encompassing Nuclear Factor I-X (NFIX) and a nonsense mutation in NFIX have been found in three individuals with Sotos-like overgrowth features, suggesting possible involvements of NFIX abnormalities in Sotos-like features. Interestingly, seven frameshift and two splice site mutations in NFIX have also been found in nine individuals with Marshall-Smith syndrome. In this study, 48 individuals who were suspected as Sotos syndrome but showing no NSD1 abnormalities were examined for NFIX mutations by high-resolution melt analysis. We identified two heterozygous missense mutations in the DNA-binding/dimerization domain of the NFIX protein. Both mutations occurred at evolutionally conserved amino acids. The c.179T>C (p.Leu60Pro) mutation occurred de novo and the c.362G>C (p.Arg121Pro) mutation was inherited from possibly affected mother. Both mutations were absent in 250 healthy Japanese controls. Our study revealed that missense mutations in NFIX were able to cause Sotos-like features. Mutations in DNA-binding/dimerization domain of NFIX protein also suggest that the transcriptional regulation is abnormally fluctuated because of NFIX abnormalities. In individuals with Sotos-like features unrelated to NSD1 changes, genetic testing of NFIX should be considered.

Publication types

  • Case Reports
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Amino Acid Sequence
  • Base Sequence
  • Child
  • Facies
  • Female
  • Humans
  • Male
  • Molecular Sequence Data
  • Mutation, Missense*
  • NFI Transcription Factors / genetics*
  • Protein Multimerization / genetics
  • Sequence Alignment
  • Sotos Syndrome / genetics*
  • Young Adult

Substances

  • NFI Transcription Factors