The analysis of O-glycans is essential for better understanding their functions in biological processes. Although many techniques for O-glycan release have been developed, the hydrazinolysis release method is the best for producing O-glycans with free reducing termini in high yield. This release technique allows the glycans to be labeled with a fluorophore and analyzed by fluorescence detection. Under the hydrazinolysis release conditions, a side reaction is observed and causes the loss of monosaccharides from the reducing terminus of the glycans (known as peeling). Using bovine fetuin (because it contains the sialylated O-glycans most commonly found on biopharmaceuticals) and bovine submaxillary gland mucin (BSM), here we demonstrate that peeling can be greatly reduced when the sample is buffer exchanged prior to hydrazinolysis with solutions of either 0.1% trifluoroacetic acid (TFA) or low-molarity (100, 50, 20, and 5 mM) ethylenediaminetetraacetic acid (EDTA). The addition of calcium chloride to fetuin resulted in an increase in peeling, whereas subsequent washing with EDTA abolished this effect, suggesting a role of calcium and possibly other cations in causing peeling. The presented technique for sample preparation prior to hydrazinolysis greatly reduces the level of undesirable cleavage products in O-glycan analysis and increases the robustness of the method.
Copyright © 2012 Elsevier Inc. All rights reserved.