We constructed ten mutants of simian immunodeficiency virus isolated from African green monkey (SIVAGM), and nine mutants of human immunodeficiency virus type 2 (HIV-2) in vitro. Their infectivity, cytopathogenicity, transactivation potential, virus RNA, and protein synthesis were examined by transfection and infection experiments. Mutations in three structural (gag, pol, env) and two regulator (tat, rev) genes abolished the infectivity of both viruses, but vpx, vpr (HIV-2), and nef were dispensable and mutant viruses were indistinguishable phenotypically from wild type virus. A vif mutant of HIV-2 showed poor infectivity in cell-free condition, whereas SIVAGM mutants grew equally well with wild type virus. In transient transfection assays, rev mutants derived from both viruses produced mainly small mRNA species and no detectable virus proteins and particles. Transactivation potential of tat mutants originated from both viruses was about three- to ten-fold less than that of respective wild type DNAs, generating small amounts of virus.