E Platinum, a newly synthesized platinum compound, induces autophagy via inhibiting phosphorylation of mTOR in gastric carcinoma BGC-823 cells

Toxicol Lett. 2012 Apr 5;210(1):78-86. doi: 10.1016/j.toxlet.2012.01.019. Epub 2012 Jan 31.

Abstract

A tightly regulated catabolic process named autophagy involves the degradation of intracellular components via lysosomes. Here we investigate the antitumor effect of E Platinum, a newly synthesized derivative of oxaliplatin, in vivo and in vitro. E Platinum exhibits growth inhibition of various tumor cells in a dose-dependent manner, but the mechanism underlying it is unclear. Based on theory introducing autophagy, we preliminarily investigate whether autophagy could contribute to the antitumor activity of E Platinum. Our results showed that autophagy induced by 12.5 μM E Platinum in gastric carcinoma BGC-823 cells was significantly characterized by the FITC-fluorescent microtubule associated protein 1 light chain 3 (MAP-LC3), lysosomal-rich/acidic compartments visualized with Lysotracker red (LTR-red) and an accumulation of numerous large autophagic vesicles within the cytoplasm, but not in the control cells. Meanwhile treatment of cells with 12.5 μM E Platinum resulted in conversion of water soluble LC3 (LC3-I) to lipidated and autophagosome-associated form (LC3-II) as well as increasing expression of autophagy protein Beclin 1. Activation of predominant lysosomal aspartic protease, LAMP-1 and cathepsin D, was demonstrated. Moreover, RNA interference targeting Beclin 1, inhibition of autophagy by 3-methyladenine (3-MA) and chloroquine significantly suppressed the above process as well as the BGC-823 cells growth inhibition triggered by 12.5 μM E Platinum. Studies of mechanism revealed that E Platinum suppressed activation of mTOR and p70S6K by decreasing phosphorylation of Akt, ERK1/2, JNK and p38 involved in mitogen-activated protein kinase signaling. We supported new evidences for E Platinum as a promising antitumor agent, involving with autophagy induction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / pharmacology*
  • Antineoplastic Agents / therapeutic use
  • Autophagy / drug effects*
  • Carcinoma / drug therapy*
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Humans
  • Organoplatinum Compounds / pharmacology*
  • Organoplatinum Compounds / therapeutic use
  • Phosphorylation / drug effects
  • Ribosomal Protein S6 Kinases, 70-kDa / antagonists & inhibitors
  • Ribosomal Protein S6 Kinases, 70-kDa / metabolism
  • Signal Transduction / drug effects
  • Stomach Neoplasms / drug therapy*
  • TOR Serine-Threonine Kinases / antagonists & inhibitors*
  • TOR Serine-Threonine Kinases / metabolism

Substances

  • Antineoplastic Agents
  • E platinum
  • Organoplatinum Compounds
  • MTOR protein, human
  • Ribosomal Protein S6 Kinases, 70-kDa
  • TOR Serine-Threonine Kinases