Aim: Our previous investigations of angiogenesis in inflammatory bowel disease showed that vascular endothelial growth factor (VEGF) blockade reduced colonic neovascularization and inflammation. We hypothesized that pretreatment with bevacizumab, a monoclonal anti-VEGF antibody, would attenuate the severity of angiogenesis and inflammation in a murine model of colitis.
Methods: C57BL/6 mice were treated with intraperitoneal injections of bevacizumab (250 μg/dose) before induction of colitis with dextran sulfate sodium (DSS). The colons were examined at predetermined time points. Colonic inflammation and microvessel density were assessed microscopically.
Results: All mice acutely developed melena and weight loss (18.8% ± 1.1% control vs 20.2% ± 1.1% treated, P = .37) and regained a similar weight percentage after the recovery (26.5% ± 4.0% vs 20.9% ± 4.4%, P = .37). Microvessel density acutely increased in both groups in response to DSS, with a trend toward inhibited angiogenesis in the treated group at the conclusion of the acute phase (194,100 ± 14,240 vs 149,400 ± 17,590 μm(2), P = .11). Bevacizumab-treated mice exhibited significantly increased inflammation after the acute phase (8.3 ± 0.8 vs 13.0 ± 2.0, P = .05), but were similar to control after the recovery (7.3 ± 1.5 vs 5.5 ± 1.0, P = .27).
Conclusions: Preemptive VEGF inhibition does not significantly attenuate angiogenesis and, in fact, worsens inflammation in a model of acute colitis. Preventive VEGF blockade may disrupt healing and exacerbate injury via alternative angiogenic or inflammatory pathways.
Copyright © 2012 Elsevier Inc. All rights reserved.