Botanical dietary supplements and herbal remedies are widely used for health promotion and disease prevention. Due to the high chemical complexity of these natural products, it is essential to develop new analytical strategies to guarantee their quality and consistency. In particular, the precise characterization of multiple botanical markers remains a challenge. This study demonstrates how a combination of computer-aided spectral analysis and 1D quantitative ¹H NMR spectroscopy (qHNMR) generates the analytical foundation for innovative means of simultaneously identifying and quantifying botanical markers in complex mixtures. First, comprehensive ¹H NMR profiles (fingerprints) of selected botanical markers were generated via ¹H iterative full spin analysis (HiFSA) with PERCH. Next, the ¹H fingerprints were used to assign specific ¹H resonances in the NMR spectra of reference materials, enriched fractions, and crude extracts of Ginkgo biloba leaves. These ¹H fingerprints were then used to verify the assignments by 2D NMR. Subsequently, a complete purity and composition assessment by means of 1D qHNMR was conducted. As its major strengths, this tandem approach enables the simultaneous quantification of multiple constituents without the need for identical reference materials, the semiquantitative determination of particular subclasses of components, and the detection of impurities and adulterants.