Background: The emergence of array comparative genomic hybridization (array CGH) as a diagnostic tool in molecular genetics has facilitated recognition of microdeletions and microduplications as risk factors for both generalised and focal epilepsies. Furthermore, there is evidence that some microdeletions/duplications, such as the 15q13.3 deletion predispose to a range of neuropsychiatric disorders, including intellectual disability (ID), autism, schizophrenia and epilepsy. We hypothesised that array CGH would reveal relevant findings in an adult patient group with epilepsy and complex phenotypes.
Methods: 82 patients (54 from the National Hospital for Neurology and Neurosurgery and 28 from King's College Hospital) with drug-resistant epilepsy and co-morbidities had array CGH. Separate clinicians ordered array CGH and separate platforms were used at the two sites.
Results: In the two independent groups we identified copy number variants judged to be of pathogenic significance in 13.5% (7/52) and 20% (5/25) respectively, noting that slightly different selection criteria were used, giving an overall yield of 15.6%. Sixty-nine variants of unknown significance were also identified in the group from the National Hospital for Neurology and Neurosurgery and 5 from the King's College Hospital patient group.
Conclusion: We conclude that array CGH be considered an important investigation in adults with complicated epilepsy and, at least at present for selected patients, should join the diagnostic repertoire of clinical history and examination, neuroimaging, electroencephalography and other indicated investigations in generating a more complete formulation of an individual's epilepsy.
Copyright © 2012 Elsevier Masson SAS. All rights reserved.