It is now widely recognized that exposure to palatable foods engages reward circuits that promote over-eating and facilitate the development of obesity. While the melanocortin 4 receptor (MC4R) has previously been shown to regulate food intake and energy expenditure, little is known about its role in food reward. We demonstrate that MC4R is co-expressed with the dopamine 1 receptor (D1R) in the ventral striatum. While MC4R-null mice are hyperphagic and obese, they exhibit impairments in acquisition of operant responding for a high fat reinforcement. Restoration of MC4R signaling in D1R neurons normalizes procedural learning without affecting motivation to obtain high fat diet. MC4R signaling in D1R neurons is also required for learning in a non-food-reinforced version of the cued water maze. Finally, MC4R signaling in neostriatal slices increases phosphorylation of the Thr34 residue of DARPP-32, a protein phosphatase-1 inhibitor that regulates synaptic plasticity. These data identify a novel requirement for MC4R signaling in procedural memory learning.
Copyright © 2012 Elsevier Inc. All rights reserved.