Inflammation injury plays a key role in the process of cerebral injury induced by ischemia/reperfusion (I/R). Thus, we studied the potential of astragaloside IV, one of the major and active components of the astragalus membranaceous, to protect rat against cerebral inflammation injury elicited by focal cerebral ischemia and reperfusion and related protective mechanisms. The rat model was induced by intraluminal occlusion of the right middle cerebral artery with reperfusion. Animals received astragaloside IV (10 or 20 mg/kg) injections when reperfusion was began to. Neurobehavioral evaluation and infarct assessment were studied. Myeloperoxidase (MPO) and tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were measured by enzyme-linked immunosorbent assay (ELISA). The rates of CD11b/CD18-positive neutrophils were analyzed via flow cytometry. Intercellular adhesion molecule-1 (ICAM-1) and nuclear factor κB (NF-κB) were measured by immunohistochemistry and Western blot. Astragaloside IV improved neurological outcome and reduced infarct volume at 24 h after reperfusion. The protective effect was achieved by preventing neutrophils accumulation in the brain parenchyma demonstrated by significantly reducing the concentration of MPO in brain tissue. Astragaloside IV exerts the protection through remarkably decreasing the percentage of CD11b/CD18-positive neutrophils and down-regulating the expression of intercellular adhesion molecule-1 (ICAM-1), which is partly achieved by strongly attenuating the production of TNF-α and IL-1β and inhibiting level of nuclear factor-κB (NF-κB). We propose an anti-inflammatory mechanism evoked by astragaloside IV by suppression of neutrophils adhesion-related molecules, which exerts neuroprotection against I/R injury.
Copyright © 2012 Elsevier Ltd. All rights reserved.