It has been suggested that action possibility judgements are formed through a covert simulation of the to-be-executed action. We sought to determine whether the motor system (via a common coding mechanism) influences this simulation, by investigating whether action possibility judgements are influenced by experience with the movement task (Experiments 1 and 2) and current body states (Experiment 3). The judgement task in each experiment involved judging whether it was possible for a person's hand to accurately move between two targets at presented speeds. In Experiment 1, participants completed the action judgements before and after executing the movement they were required to judge. Results were that judged movement times after execution were closer to the actual execution time than those prior to execution. The results of Experiment 2 suggest that the effects of execution on judgements were not due to motor activation or perceptual task experience-alternative explanations of the execution-mediated judgement effects. Experiment 3 examined how judged movement times were influenced by participants wearing weights. Results revealed that wearing weights increased judged movement times. These results suggest that the simulation underlying the judgement process is connected to the motor system, and that simulations are dynamically generated, taking into account recent experience and current body state.