Self-assembly of block copolymer films can generate useful periodic nanopatterns, but the self-assembly needs to be templated to impose long-range order and to control pattern registration with other substrate features. We demonstrate here the fabrication of aligned sub-10-nm line width patterns with a controlled orientation by using lithographically formed post arrays as templates for a 16 kg/mol poly(styrene-block-dimethylsiloxane) (PS-b-PDMS) diblock copolymer. The in-plane orientation of the block copolymer cylinders was controlled by varying the spacing and geometry of the posts, and the results were modeled using 3D self-consistent field theory. This work illustrates how arrays of narrow lines with specific in-plane orientation can be produced, and how the post height and diameter affect the self-assembly.
© 2012 American Chemical Society