Gemin5 proteolysis reveals a novel motif to identify L protease targets

Nucleic Acids Res. 2012 Jun;40(11):4942-53. doi: 10.1093/nar/gks172. Epub 2012 Feb 22.

Abstract

Translation of picornavirus RNA is governed by the internal ribosome entry site (IRES) element, directing the synthesis of a single polyprotein. Processing of the polyprotein is performed by viral proteases that also recognize as substrates host factors. Among these substrates are translation initiation factors and RNA-binding proteins whose cleavage is responsible for inactivation of cellular gene expression. Foot-and-mouth disease virus (FMDV) encodes two proteases, L(pro) and 3C(pro). Widespread definition of L(pro) targets suffers from the lack of a sufficient number of characterized substrates. Here, we report the proteolysis of the IRES-binding protein Gemin5 in FMDV-infected cells, but not in cells infected by other picornaviruses. Proteolysis was specifically associated with expression of L(pro), yielding two stable products, p85 and p57. In silico search of putative L targets within Gemin5 identified two sequences whose potential recognition was in agreement with proteolysis products observed in infected cells. Mutational analysis revealed a novel L(pro) target sequence that included the RKAR motif. Confirming this result, the Fas-ligand Daxx, was proteolysed in FMDV-infected and L(pro)-expressing cells. This protein carries a RRLR motif whose substitution to EELR abrogated L(pro) recognition. Thus, the sequence (R)(R/K)(L/A)(R) defines a novel motif to identify putative targets of L(pro) in host factors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Motifs
  • Amino Acid Sequence
  • Animals
  • Cell Line
  • Endopeptidases / metabolism*
  • Foot-and-Mouth Disease Virus / physiology
  • Molecular Sequence Data
  • Protein Biosynthesis
  • Proteolysis
  • SMN Complex Proteins / chemistry*
  • SMN Complex Proteins / metabolism*

Substances

  • SMN Complex Proteins
  • Endopeptidases
  • leader proteinase, foot-and-mouth disease virus