This paper presents four new QSAR models for CYP2C9 and CYP2D6 substrate recognition and inhibitor identification based on human clinical data. The models were used to screen a large data set of environmental chemicals for CYP activity, and to analyze the frequency of CYP activity among these compounds. A large fraction of these chemicals were found to be CYP active, and thus potentially capable of affecting human physiology. 20% of the compounds within applicability domain of the models were predicted to be CYP2C9 substrates, and 17% to be inhibitors. The corresponding numbers for CYP2D6 were 9% and 21%. Where the majority of CYP2C9 active compounds were predicted to be both a substrate and an inhibitor at the same time, the CYP2D6 active compounds were primarily predicted to be only inhibitors. It was demonstrated that the models could identify compound classes with a high occurrence of specific CYP activity. An overrepresentation was seen for poly-aromatic hydrocarbons (group of procarcinogens) among CYP2C9 active and mutagenic compounds compared to CYP2C9 inactive and mutagenic compounds. The mutagenicity was predicted with a QSAR model based on Ames in vitro test data.
Copyright © 2012 Elsevier Ltd. All rights reserved.