The coadsorption of the anionic and cationic components of a model quaternary ammonium bromide surfactant on Au(111) has been measured using the thermodynamics of an ideally polarized electrode. The results indicate that both bromide and trimethyloctylammonium (OTA(+)) ions are coadsorbed over a broad range of the electrical state of the gold surface. At negative polarizations, the Gibbs surface excess of the cationic surfactant is largely unperturbed by the presence of bromide ions in solution. However, when the Au(111) surface is weakly charged the existence of a low-coverage, gaslike phase of adsorbed halide induces an appreciable (~25%) enhancement of the interfacial concentration of the cationic surfactant ion. At more positive polarizations, the coadsorbed OTA(+)/Br(-) layer undergoes at least one phase transition which appears to be concomitant with the lifting of the Au(111) reconstruction and the formation of a densely packed bromide adlayer. In the absence of coadsorbed halide, the OTA(+) ions are completely desorbed from the Au(111) surface at the most positive electrode polarizations studied. However, with NaBr present in the electrolyte, a high surface excess of bromide species leads to the stabilization of adsorbed OTA(+) at such positive potentials (or equivalent charge densities).