High-fat-diet exposure induces IgG accumulation in hypothalamic microglia

Dis Model Mech. 2012 Sep;5(5):686-90. doi: 10.1242/dmm.009464. Epub 2012 Mar 1.

Abstract

The mediobasal hypothalamic arcuate nucleus (ARC), with its relatively 'leaky' blood-brain barrier that allows more circulating molecules to enter the brain, has emerged as a key sensor of blood-borne signals. In both the ARC and white adipose tissue (WAT), consumption of a high-fat diet (HFD) rapidly induces infiltration of microglia (ARC) or macrophages (WAT). Animals with HFD-induced obesity (DIO) and insulin resistance additionally accumulate B cells in WAT, increasing the local production of pathogenic antibodies. We therefore investigated whether DIO mice or genetically obese ob/ob mice have increased IgG in the ARC, analogous to the recent observations in WAT. Following 16 weeks of exposure to a HFD, wild-type (WT) mice had significantly increased IgG-immunoreactivity (ir) signaling that was specific to the ARC and was exclusively concentrated in microglia. By contrast, IgG-ir of age-matched obese ob/ob mice fed standard chow had ARC IgG levels comparable with those in chow-fed WT control mice. However, following 2 weeks of HFD exposure, ob/ob mice also had a significant increase of IgG-ir in the ARC. In summary, our findings reveal a novel pathophysiological phenomenon, specific for the hypothalamic ARC, that is induced by exposure to a HFD and can be enhanced, but not caused, by genetic obesity.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Arcuate Nucleus of Hypothalamus / metabolism
  • Arcuate Nucleus of Hypothalamus / pathology
  • Densitometry
  • Diet, High-Fat*
  • Fluorescent Antibody Technique
  • Glial Fibrillary Acidic Protein / metabolism
  • Hypothalamus / metabolism*
  • Hypothalamus / pathology
  • Immunoglobulin G / metabolism*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Obese
  • Microglia / metabolism*
  • Microglia / pathology
  • Weight Gain

Substances

  • Glial Fibrillary Acidic Protein
  • Immunoglobulin G