We report here a rapid (10 s of heating) graphene growth method that can be carried out on any desired substrate, including an insulator, thus negating the need for the transfer from the metal substrate. This technique is based on metal-induced crystallization of amorphous carbon (a-C) to graphene, and involves an ultra-thin metal layer that is less than 10 nm in thickness. Rapid annealing of a bilayer of a-C and metal deposited on the surface leads to the formation of graphene film, and to subsequent breaking-up of the thin metal layer underneath the film, thus resulting in the formation of a graphene–metal hybrid film which is both transparent and electrically conducting. Based on Raman studies, we have also systematically compared ultra-thin metal-induced crystallization behavior with a case of conventional thick metal. Based on the present investigation, it was observed that the dominant growth mechanism in ultra-thin metal-induced crystallization is nucleation controlled.