L-ficolin, one of the complement lectins found in human serum, is a novel pattern recognition molecule that can specifically bind to microbial carbohydrates, thereby activating the lectin complement pathway and mounting a protective innate immune response. However, little is known about the role of L-ficolin during viral infections in vivo. In the present study, we used a mouse model of influenza A virus infection to demonstrate that the administration of exogenous L-ficolin or ficolin A (FCNA - an L-ficolin-like molecule in the mouse) is protective against the virus. Furthermore, FCNA-null mice have a greatly increased susceptibility to infection with the influenza A virus. Moreover, we found recombinant human L-ficolin inhibited influenza A virus entry into Madin-Darby canine kidney cells. More importantly, L-ficolin can recognize and bind hemagglutinin (HA) and neuraminidase (NA) glycoproteins and different subtypes of influenza A virus, and these interactions can be competitively inhibited by N-acetyl-D-glucosamine. In addition, the binding of L-ficolin and FCNA may lead to the activation of the lectin complement pathway. To our knowledge, this is the first report demonstrating that L-ficolin can block influenza virus infections both in vitro and in vivo using FCNA-knockout mice, possibly by interacting with the carbohydrates of HA and NA. Therefore, these data may provide new immunotherapeutic strategies based on the innate immune molecule L-ficolin against the influenza A virus.
Copyright © 2012 S. Karger AG, Basel.